Skip to contents

The idx() method converts indices.
The type of output depends on the type of input index arguments given:

  • idx(x, i = i, ...) converts linear indices to a strictly positive integer vector of linear indices.

  • idx(x, s = s, d = d, ...) converts dimensional indices to a strictly positive integer vector of linear indices.

  • idx(x, slice = slice, margin = margin, ...) converts indices of one dimension to a strictly positive integer vector of indices for that specific dimension.

Vectors (both atomic and recursive) only have index argument i.
Data.frame-like objects only have the slice, margin argument pair.
Arrays (both atomic and recursive) have the s, d argument pair, as well as the i argument and the slice, margin argument pair.

The result of the idx() method can be used inside the regular square-brackets operators.
For example like so:

x <- array(...)
my_sub2ind <- idx(x, s, d)
x[my_sub2ind] <- value

y <- data.frame(...)
rows <- idx(y, 1:10, 1, inv = TRUE)
cols <- idx(y, c("a", "b"), 2)
y[rows, cols] <- value

thus allowing the user to benefit from the convenient index translations from 'squarebrackets', whilst still using R's default copy-on-modification semantics (instead of the semantics provided by 'squarebrackets').


Usage

idx(x, ...)

# Default S3 method
idx(x, i, inv = FALSE, ..., chkdup = getOption("squarebrackets.chkdup", FALSE))

# S3 method for class 'array'
idx(
  x,
  s = NULL,
  d = 1:ndim(x),
  slice = NULL,
  margin = NULL,
  i = NULL,
  inv = FALSE,
  ...,
  chkdup = getOption("squarebrackets.chkdup", FALSE)
)

# S3 method for class 'data.frame'
idx(
  x,
  slice,
  margin,
  inv = FALSE,
  ...,
  chkdup = getOption("squarebrackets.chkdup", FALSE)
)

Arguments

x

vector, matrix, array, or data.frame; both atomic and recursive objects are supported.

...

see squarebrackets_method_dispatch.

i, s, d, margin, slice, inv

See squarebrackets_indx_args.
Duplicates are not allowed.

chkdup

see squarebrackets_options.
[for performance: set to FALSE]

Value

For idx(x, i = i, ...) and idx(x, s = s, d = d, ...):
A strictly positive integer vector of flat indices.

For idx(x, margin = margin, slice = slice, ...):
A strictly positive integer vector of indices for the dimension specified in margin.

Examples


# atomic ====

x <- 1:10
x[idx(x, \(x)x>5)] <- -5
print(x)
#>  [1]  1  2  3  4  5 -5 -5 -5 -5 -5

x <- array(1:27, dim = c(3,3,3))
x[idx(x, n(1:2, 1:2), c(1,3))] <- -10
print(x)
#> , , 1
#> 
#>      [,1] [,2] [,3]
#> [1,]  -10  -10  -10
#> [2,]  -10  -10  -10
#> [3,]    3    6    9
#> 
#> , , 2
#> 
#>      [,1] [,2] [,3]
#> [1,]  -10  -10  -10
#> [2,]  -10  -10  -10
#> [3,]   12   15   18
#> 
#> , , 3
#> 
#>      [,1] [,2] [,3]
#> [1,]   19   22   25
#> [2,]   20   23   26
#> [3,]   21   24   27
#> 


################################################################################


# recursive ====

x <- as.list(1:10)
x[idx(x, \(x)x>5)] <- -5
print(x)
#> [[1]]
#> [1] 1
#> 
#> [[2]]
#> [1] 2
#> 
#> [[3]]
#> [1] 3
#> 
#> [[4]]
#> [1] 4
#> 
#> [[5]]
#> [1] 5
#> 
#> [[6]]
#> [1] -5
#> 
#> [[7]]
#> [1] -5
#> 
#> [[8]]
#> [1] -5
#> 
#> [[9]]
#> [1] -5
#> 
#> [[10]]
#> [1] -5
#> 

x <- array(as.list(1:27), dim = c(3,3,3))
x[idx(x, n(1:2, 1:2), c(1,3))] <- -10
print(x)
#> , , 1
#> 
#>      [,1] [,2] [,3]
#> [1,] -10  -10  -10 
#> [2,] -10  -10  -10 
#> [3,] 3    6    9   
#> 
#> , , 2
#> 
#>      [,1] [,2] [,3]
#> [1,] -10  -10  -10 
#> [2,] -10  -10  -10 
#> [3,] 12   15   18  
#> 
#> , , 3
#> 
#>      [,1] [,2] [,3]
#> [1,] 19   22   25  
#> [2,] 20   23   26  
#> [3,] 21   24   27  
#> 


x <- data.frame(
  a = sample(c(TRUE, FALSE, NA), 10, TRUE),
  b = 1:10,
  c = rnorm(10),
  d = letters[1:10],
  e = factor(letters[11:20])
)
rows <- idx(x, 1:5, 1, inv = TRUE)
cols <- idx(x, c("b", "a"), 2)
x[rows, cols] <- NA
print(x)
#>       a  b           c d e
#> 1  TRUE  1  0.02654709 a k
#> 2  TRUE  2 -0.69009774 b l
#> 3    NA  3  0.15684486 c m
#> 4    NA  4 -0.36618469 d n
#> 5  TRUE  5 -0.81955562 e o
#> 6    NA NA  0.74374492 f p
#> 7    NA NA -0.06793614 g q
#> 8    NA NA -0.39420246 h r
#> 9    NA NA -0.43109296 i s
#> 10   NA NA -0.22014604 j t